Particle Size Distribution Correction Method Using a Simulated Annealing Technique
نویسنده
چکیده
The procedure for obtaining the particle size distribution by visual inspection of a sample involves stereological errors, given the cut of the sample. A cut particle, supposedly spherical, with radius R, will be counted as a circular particle with radius r, r≤R. The difference between r and R depends on how far from the center of the sphere the cut was performed. This introduces errors when the extrapolation of the properties from two to three dimensions during the analysis of a sample. The usual method is to correct the distribution by probabilistic functions, which have large errors. This paper presents a method to reduce the error inherent to this problem. The method is to compute a simulation of the preparation process in a sample whose structure can be described by non-penetrating spheres of various diameters which meet a known probability distribution function, for example, a log-logistic function, or even a constant function. For each distribution radius, a number of spheres is generated and virtually cut, generating a bi-dimensional (2D) distribution. The 2D curves of the spheres distribution obtained in this simulation are compared with that obtained by the experimental procedure and then the parameters of the threedimensional distribution function are adjusted until the 2D curves are similar to the experimental one using the optimization method Simulated Annealing for the curve-fitting. In future this method will be applied to the analysis of the oil reservoir rocks.
منابع مشابه
Adaptive neuro-fuzzy inference system and neural network in predicting the size of monodisperse silica and process optimization via simulated annealing algorithm
In this study, Back-propagation neural network (BPNN) and adaptive neuro-fuzzy inference system (ANFIS) methods were applied to estimate the particle size of silica prepared by sol-gel technique. Simulated annealing algorithm (SAA) employed to determine the optimum practical parameters of the silica production. Accordingly, the process parameters, i.e. tetraethyl orthosilicate (TEOS), H2O and N...
متن کاملA SAIWD-Based Approach for Simultaneous Reconfiguration and Optimal Siting and Sizing of Wind Turbines and DVR units in Distribution Systems
In this paper, a combination of simulated annealing (SA) and intelligent water drops (IWD) algorithm is used to solve the nonlinear/complex problem of simultaneous reconfiguration with optimal allocation (size and location) of wind turbine (WT) as a distributed generation (DG) and dynamic voltage restorer (DVR) as a distributed flexible AC transmission systems (DFACT) unit in a distribution sys...
متن کاملSequential Monte Carlo simulated annealing
In this paper, we propose a population-based optimization algorithm, Sequential Monte Carlo Simulated Annealing (SMC-SA), for continuous global optimization. SMC-SA incorporates the sequential Monte Carlo method to track the converging sequence of Boltzmann distributions in simulated annealing. We prove an upper bound on the difference between the empirical distribution yielded by SMC-SA and th...
متن کاملSynthesis of Linear Array of Parallel Dipole Antennas with Minimum Standing Wave Ratio Using Simulated Annealing and Particle Swarm Optimization approach
In this paper, we propose a technique based on two evolutionary algorithms simulated annealing and particle swarm optimization to design a linear array of half wavelength long parallel dipole antennas that will generate a pencil beam in the horizontal plane with minimum standing wave ratio (SWR) and fixed side lobe level (SLL). Dynamic range ratio of current amplitude distribution is kept at a ...
متن کاملOPTIMAL SIZE AND PLACEMENT OF DVR's IN DISTRIBUTION SYSTEM USING SIMULATED ANNEALING (SA)
For the optimal size and placement of the dynamic voltage restorer (DVR) in a distribution network, in this paper the Simulated Annealing (SA) method is proposed. The multi-objective problem is converted to a single function using the goal attainment method. The obtained results show the voltage sag improvement on sensitive load nodes and other nodes in distribution system with minimum cost.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016